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The development of catalytic asymmetric reactions with simple Table 1. Optimization of the Reaction between a-Phenyl-
experimental procedures has been a rapidly growing area in %-cyanoacetates 1 and Azodicarboxylates 2 Catalyzed by g-ICD

synthetic organic chemistry over the past few years. In particular, cat. load  temp conv  ee
the direct catalytic and enantioselective approach using unmodified entry substrate  Pg  (mol%)  (°C) time  product (%) (%)
reaction partners, avoiding the tedious preformation of, for example, 1 la COEt 5 -78 =<30s 3a >95 84
highly reactive nucleophiles, has received much attention, and 2 la  Troc 5 —78 =<30s 3b  >95 7
decisive progress has been obtained. The carbeteroatom bond 2 12 (B:gé g :;g 532 ?nin gg igg gi
formation is a fundamental process, and the construction of optically 5 b  Boc 5 —78 4h 3e  >95 >908
active nitrogen-containing compounds is an important task in 6 1b  Boc 5 rt 45min 3e >95 90
chemistry due to their biological activity and pharmaceutical 7 1b  Boc 5 —20 90min 3e >95 94
applications: A simple and straightforward approach for the 8 ~ 1b  Boc 1 —-78 23h  3e >95 >08
9 1b Boc 05 -—78 96 h 3e >95 >08

synthesis of optically active nitrogen-containing building blocks
via C—N bond formation is the direat-amination of unmodified a Reactions performed with 1.2 equiv afcyanoacetate relative to the
aldehydes and ketones using chiral secondary amines as organoazodicarboxylate? ee determined by CSP-HPLC analysis.
catalysts’ Direct a-amination of-keto esters and pyruvic acid
derivatives employing a bifunctional Lewis acid catalyst have also azodicarboxylated, the corresponding hydrazine add@ct was
been reported.n the latter case, the enantioselectivity is induced isolated with a satisfying enantioselectivity of 94% ee (entry 4).
by interaction between the chiral Lewis acid catalyst, the enolized With the aim of further optimization, the impact of ester substituent
nucleophile, and the nitrogen electrophile. (RY) was investigated, and a direct correlation between the size of
Herein we report a general and highly enantioselective direct R* and the rate and enantioselectivity was observed. The reaction
organocatalytic amination ofi-substitutedo-cyanoacetates and ~ Of 1b with 2d, catalyzed by 5 mol 96-ICD, was complete within
B-dicarbonyl compounds catalyzed by a chiral tertiary amine. First, 4 h at—78°C, and3ewas isolated with an excellent optical purity

we examined the feasibility of the reaction between ethphenyl of >98% ee (entry 5). It should be noted that the reactions of
a-cyanoacetatéa and diethyl azodicarboxylata using catalytic a-cyanoacetates are notoriously difficult to render asymmétric.
amounts of chiral bases of the cinchona alkaloid fafrilya model ~ The reaction is easily monitored by disappearance of the yellow
reaction for further optimization (eq 1). color of the azodicarboxylat?, and pure product can be obtained

using stoichiometric amounts dfand?2 upon filtration through a
plug of silica gel. At more practical temperatures satisfactory levels

COR! Pa., y of optipal puritie_s were a_llso ol_)tained (entries 5,7). An often_
F’h—<CN * N\Pg Pay-Nepg ) recognized practical limitation, using organocatalysis as a synthetic
1a: R = Bt 2a: Pg = COEt OH Ph—-COR! tool on large-scale synthesis, is the required amount of catalyst
1b: R = +Bu 2 gg:gg;c ¥g"geh;;<; g;‘e relative to substrate (typically-510 mol %). However, the present

2d: Pg = Boc catalytic system tolerates catalyst loading down to 0.5 mol %

Despite the potential for further elaboratidthe use of-cyano- without compromising either the yield or the enantioselectivity

acetates in asymmetric catalysis has been met with limited (€Nt 9). . _ o
succesé’ Only in a recent study of Michael additions tof- With the optimized reaction conditions in hand, the scope of

unsaturated imides by Jacobsen et al. have enantioselectivitied® enantioselectivg-ICD-catalyzed amination was investigated.
exceeding 90% ee been reporfedl.thorough screening showed A series ofa-aryl-a-cyanoacetatesb—i were reacted with azodi-
that all the alkaloids tested catalyzed a clean reaction affording the arboxylate2d catalyzed by 5 mol 95-ICD (eq 2, Table 2).
amination producBa in nearly quantitative yields, and we were

H
pleased to find that the constrained quinidine-derived alkaloid A_<COzt-Bu BOC\N Boc - -Nogoe
p-isocupreiding (5-ICD) was superior in terms of enantioselectivity. v Nigoo 5mol%RIcD  Ar—{~COxBu @
In the presence of 5 mol 96-ICD, the reaction reached full 1 2d ;’:‘.

conversion within less than 30 s to gida having a quaternary

stereocentéf with 84% ee (Table 1, entry 1). Reactions were Substrates bearing ortho, meta, and para substituents underwent
performed in toluene, as the use of more polar/coordinating solventsclean reactions affording the corresponding produgftsh in
caused a significant drop in enantioselectivity. Varying the structure quantitative yields and with excellent enantioselectivities 87%

of the azodicarboxylates had a dramatic impact on both the rateee (entries 24). Interestingly, introduction of Lewis basic sub-
and asymmetric induction (entries—4). When employing the stituents (electron-donating/withdrawing) in the para position
synthetically attractive, but sterically encumbered tedt-butyl resulted in slightly lower enantioselectivities (entries 5,6). Polyaro-
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Table 2. Organocatalytic Asymmetric Reactions of tert-Butyl Scheme 1. Nitrogen—Nitrogen Bond Cleavage Using Sml;
o-Aryl-o-cyanoacetates 1 and Di-tert-butyl Azodicarboxylate 2d@ H 5
N ~Boc
entry  substrate Ar product  temp (°C)  yield® (%)  eec (%) B::—TLC:;-CBu 1. TFAA, Pyridine, CH,Cly PhiTLCOZt—Bu
1 1b  Ph 3e -78 99 >98 CN 2. Smiz, THF, MeOH CN.
2 i1c  o-F-CHs 3f -50 99 98 3 6 (46% yield)
‘31 12 g}geccle“ gﬁ :;g gg 3; procedure under mild reaction conditions (Scheme 1). The chemical
5 1f p-NOz-GC(j'i 4 3] _50 99 91 transformations were performed without loss of optical purity.
6 1g p-MeO-GHs 3 —-78 95 89 In summary, the first organocatalytic highly enantioselective
7 1h 2-nhaphtr|1yl 3:< —78 99 98 amination of substitutedi-cyanoacetates angdicarbonyl com-
8 L 2-thieny 3 —78 99 97 ounds is reported with a remarkable catalyst turnover number
od 1i 2-thienyl 3l —50 84 93 P P Y

reaching 1000. Studies, aimed at mechanistic elucidation and
aReactions were carried out in toluene (0.1 M) with 1.1 equivet generality of the concept, are currently in progress and will be

butyl a-aryl-a-cyanoacetate relative to the azodicarboxylate in the presence reported in due course.

of 5 mol %A-ICD (16—20 h). Yield of isolated product ee determined ; ;

by CSP-HPLC analysis. Reaction performed in the presence of 0.1 mol ACknOWIedgment. Thls work was made poss!ble by a grant

% catalyst® Formation of~10% FC product detected By NMR. from The Danish National Research Foundation. Thanks are

expressed to Dr. Rita G. Hazell for performing X-ray analysis.

Supporting Information Available: Complete experimental pro-

cedures and characterization of products (PDF). This material is free

Table 3. [-ICD-Catalyzed Reactions of -Keto Esters and a
[-Diketone with Di-tert-butyl Azodicarboxylate 2d?

Entr ubstrat Temp/° Tim Prod Yield”/% Ee'/% .
. SobStc?e emplC eh Prod Yield/% Ee/ of charge via the Internet at http://pubs.acs.org.
I 42 g opn It 16 5a 99 20
R)
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s ©oN 78 S ©oN
1i 3l 7
Catalyst = Et3N: 1 : 10
Catalyst = B-ICD: >99 : 1
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